

1 Continuous Measures of Decision-Difficulty Captured Remotely: II. 2 Webcam eye-tracking reveals early decision processing

3 Jennifer K. Bertrand^{1,2} Alexandra A. Ouellette Zuk¹ Craig S. Chapman^{1,2}

4 ¹Neuroscience and Mental Health Institute, University of Alberta

5 ²Faculty of Kinesiology, Sport, and Recreation, University of Alberta

6 **Abstract**

7 As decisions require the gathering of relevant information, eye-tracking measures that capture the way
8 visual information is typically acquired offer powerful indices of the dynamic decision-making process.
9 This study is the second of a pair of studies that explore continuous measures of decision-making using
10 remote, online tools in naturalistic settings. While cursor-tracking, used in the companion paper (Ouel-
11 lette Zuk et al., 2023), enabled access to dynamic decision processes expressed during movement, in the
12 present study, we now employ webcam eye-tracking to examine the dynamics of information gathering
13 during decision making prior to movement initiation. Using three previously published binary choice
14 tasks, we explored indices of decision difficulty in the gaze dynamics that would complement the motor
15 measures in our companion paper. We find that harder choices elicit more eye dwells and longer final
16 dwells, reflecting a decision resolution process that Ouellette Zuk et al. index during the final choice
17 movement. Beyond this, we identify distinct gaze patterns uniquely employed in each task, revealing the
18 utility and sensitivity of gaze metrics in illuminating the early difficulty-independent information gath-
19 ering processes at play. Together, this paper series demonstrates the power of remote, online methods
20 as tools for deeply understanding the complete, dynamic and continuous decision process, from the first
21 glance to the final response.

22
23 **Keywords:** decision-making, eye-tracking, information gathering, remote data capture

24 **1 Introduction**

25 In the past, research on decision-making has primarily focused on the outcomes of decisions and has used
26 discrete measures such as choice-outcomes, accuracy, or reaction time to understand the underlying cognitive
27 processes involved (see [39] for review). However, these approaches really only capture *what* decision was
28 made with little or no information about *how* a particular decision was arrived at. To address this gap,
29 recent research has turned to the motor system as a means to investigate the dynamics of decision-making.
30 Actions that move through space have been shown to track decision processes that unfold across time [7, 15,
31 11, 48].

32 One of the most accessible ways to record movement data is through cursor movements on a screen. For
33 example, 2-D computer-mouse movements provide a sensitive, flexible, and scalable method to study decision
34 dynamics ([26, 33, 21, 14, 12, 46], and many more). Moreover, the widespread adoption of cursor-based
35 technologies (computers, tablets, smartphones) and the recent availability of online experiment generation
36 tools (e.g., Labvanced [13], Gorilla [2], lab.js [22], jsPsych [32], PsychoPy [36]) means that now, more than
37 ever, we can collect information about decision dynamics from larger, more diverse samples and from people
38 in more ecologically-valid contexts (i.e., remote, online data collection). The current study is the second
39 half of a two-article set aimed at mapping the possibilities and limitations of using remote data collection
40 during cursor-based decision tasks. In the first study (Ouellette Zuk et al., 2023), we focus on testing
41 the robustness of remote data collection for understanding dynamic decision-making, showing that nuanced
42 details of decision processes are available not only in computer-mouse movements but are also clearly evident
43 and sometimes even stronger when the same task is deployed on tablets and smartphones.

44 But, our first study is literally only half the story. While cursor-tracking reveals valuable insights into the
45 decision process once movement begins, it cannot track details of the perceptual processes that occur prior to
46 a movement toward a particular choice being initiated. While reaction time reliably tracks decision difficulty
47 in this early phase (e.g., [38, 35]) it fails to capture any of the constituent dynamics of how the decision process
48 is evolving. In these crucial early moments of a decision, a person is gathering the necessary information from
49 their environment to inform their choice. For tasks involving visual stimuli in particular, this information
50 gathering is primarily mediated by eye movements. Therefore, eye-tracking offers a unique opportunity to
51 investigate the decision process at an earlier stage, revealing how individuals extract information and make
52 decisions based on where they focus their gaze.

53 Given this, it is not surprising that eye-tracking has long been a prominent method in decision-making
54 research. Extensive work has shown the interconnectedness of gaze and choice, where gaze patterns can
55 both reflect and bias choices [42, 17, 16]. Moreover, eye movements have been shown to actively sample the
56 world in a way that adaptively maximizes the informative value of fixations [19, 6]. Analyzing these fixation
57 sequences that precede a decision has provided valuable insights, revealing that the location, duration, and
58 pattern of fixations serve as indices of the relative competition between choice options [28, 29]. Findings like
59 these have challenged classic decision-making theories (e.g., evidence accumulation; [18, 37, 43]) to reconcile
60 the important role the eyes play in information sampling. This has led to the development of gaze-aware
61 decision models such as the attentional drift diffusion model (aDDM; [28]), Decision Field Theory [5], and
62 the gaze cascade model [42]. These models assume an option receives more evidence when gazed at, acting
63 like an amplifier for the attended option [27]. Moreover, the aDDM has been extended beyond preferential
64 choice contexts, encompassing different stimuli types (e.g., numeric information vs pictorial images; [30])
65 and choice domains (e.g., risky and social choices; [44]). Collectively, these theoretical advancements and
66 empirical contributions provide a foundation for comprehending how the eyes sample spatially-distributed
67 information, emphasizing the value of eye-tracking as a method to better understand how decisions unfold.
68 In the context of the current study, they show that eye-tracking is almost a perfect complement to cursor-
69 tracking in its ability to fill in the gap of decision dynamics during the earliest stages of a choice being
70 made.

71 A major drawback shared by all of the aforementioned eye-tracking studies is their confinement to lab-
72 oratory settings. Recently, however, the use of webcam eye-tracking has emerged as a promising avenue in
73 bridging the gap between controlled laboratory experiments and data collected in a wide range of environ-
74 ments (e.g., [49, 47, 4]). Admittedly, webcam eye-tracking is still a method in its infancy and has notable
75 limitations in both temporal and spatial accuracy [40, 3, 49]. Despite these challenges, it offers a distinct ad-
76 vantage by capturing gaze patterns in ecologically-valid settings such as within the participants' own homes
77 and on their personal devices. Furthermore, it can be argued that - with the overall trend toward increasing
78 digital and screen based interactions - computerized decision-making tasks like the one used by Krajbich et
79 al. [28], now closely resemble everyday, real-world decisions. Thus, by shifting these tasks to a more natu-
80 ralistic context, such as the participants' homes, a more comprehensive exploration of authentic, real-world
81 visual behaviours and decision-making processes becomes possible. Additionally, the remote nature of this
82 method allows for scalable data collection beyond the limitations of a laboratory, while also providing access
83 to more diverse, global populations [23, 1].

84 Therefore, in this study we employ webcam eye-tracking - in part to explore its potential and limits
85 as a method - and theoretically to explore the relationship between decision difficulty and gaze behaviour
86 patterns. As previously mentioned, the current study is a companion paper to Ouellette Zuk et al. (2023),
87 with both studies intentionally sharing the same experimental design. This design aimed to replicate and
88 extend three unique and previously published mouse-tracking based decision-making tasks. These tasks
89 were deliberately chosen to cover a range of decision domains including objective perceptual judgments (Nu-
90 meric Size-Congruity [12]), semi-subjective conceptual judgements (Sentence Verification [10]) and subjective
91 preference judgements (Photo Preference [26]). The tasks also varied in terms of stimulus characteristics,
92 encompassing numerical digits, written statements, and photos. By employing webcam eye-tracking, we not
93 only gain insights into how the decision context varies across tasks but also how differences in the presenta-
94 tion and distribution of information across space affect the decision-making process, something that cannot
95 be solely obtained through mouse-tracking. Thus, replicating Ouellette Zuk's design with eye-tracking will
96 not only allow us to explore the rich, dynamic decision process earlier in time, beginning before movement
97 initiation, but also explore how this process presents across decision contexts and with different distributions

98 of decision information in the display. In doing so, we also demonstrate the utility of remote data collection
99 in general and webcam eye-tracking in specific as a tool for capturing this rich readout of decision-making
100 from participants in their own environments using their own devices.

101 2 Results

102 This study replicates and extends our cursor-tracking-focused companion paper (Ouellette Zuk et al., 2023).
103 Both studies employed three binary choice tasks where participants indicated their choice through cursor
104 movements: a Sentence Verification task [10], a Numeric-Size Congruity task [12], and a Photo Preference
105 task [26]. Each task was designed and analyzed to produce Easy and Hard trials (see Figure 1): For the
106 Sentence Verification task, based on previous work [10], participants indicated if a simple statement was
107 true or false. On Easy trials, the statements were true and not negated (e.g., ‘Cars have tires’) and on Hard
108 trials the statements were true and negated (e.g., ‘Cars do not have wings’). For the Numeric-Size Congruity
109 task, based on previous work [12], participants indicated which of two digits had a higher numeric value. On
110 Easy trials the size and numeric value were congruent (e.g., 2 vs. 8)), and on Hard trials size and value were
111 incongruent (e.g., 2 vs. 8). Finally, for the Photo-Preference task, based on previous work [26], participants
112 indicated which of two photos they preferred. On Easy trials, one photo had low pleasantness while the
113 other had high pleasantness and on Hard trials both photos had high pleasantness. Our companion paper
114 successfully replicated the main finding from the original task publications (i.e., [10, 12, 26]) that responses on
115 Hard trials take longer than Easy trials, while also showing how decision difficulty affects cursor movements.
116 Here we predict that we will also replicate the finding that Hard trials generate longer response times than
117 Easy trials and investigate how decision difficulty affects webcam-tracked gaze behaviour.

118 2.1 Response Time: Hard decisions take longer than easy decisions

119 We use Response Time as a single, broad measure to capture the duration from the presentation of choice
120 options to the point of response (marked by the cursor entering the selected option). It encompasses both
121 reaction time and movement time as described in our companion paper (Ouellette Zuk et al., 2023). Replicating
122 our previous work, and confirming our key prediction, across all three tasks we observed a consistent
123 Difficulty effect (see Figure 1). Specifically, Hard trials required significantly more time than Easy trials
124 (Sentence Verification: $t(96) = 21.0$, $p < .001$; Numeric-Size Congruity: $t(89) = 8.01$, $p < .001$; Photo
125 Preference: $t(96) = 7.95$, $p < .001$).

126 2.2 Proportion of Trials: Unique task demands drive unique gaze behaviours

127 We began our examination of gaze patterns within each task by characterizing and analyzing the most
128 frequently observed dwell patterns (see Figure 1). For our analysis, we defined a dwell as a continuous gaze
129 on an area of interest, lasting at least 100 milliseconds within the expanded boundaries of that area (see
130 Figure 3). A dwell ended if the gaze shifted outside that area for more than 100 milliseconds. To identify
131 the most common gaze patterns we conducted separate RMANOVAs for each task. These analyses aimed
132 to assess when and how often the eyes dwelled on particular AOIs. The following RMANOVAs include up
133 to four factors to describe the dwell patterns observed: Dwell Count, Difficulty, First Dwell Side, and Last
134 Dwell Option. The Dwell Count factor consisted of four levels (1, 2, 3, and 4 or more), indicating the number
135 of unique dwells during a trial. The Difficulty factor distinguished between trials classified as either Hard
136 or Easy. The First Dwell Side factor described whether the initial dwell on a trial fell upon the Left or the
137 Right choice option. Finally, the Last Dwell Option factor indicated whether the final dwell of the trial was
138 on the Chosen or Unchosen option.

139 2.2.1 Sentence Verification Task

140 Sentence Verification was unique in that many times (~35% of all trials) participants’ eyes dwelled only on
141 the sentence and never on either choice option. We represent the proportion of these “No Dwells on Options”
142 in Figure 1A, but it is not possible to examine them in our statistical analysis of choice option gaze patterns.

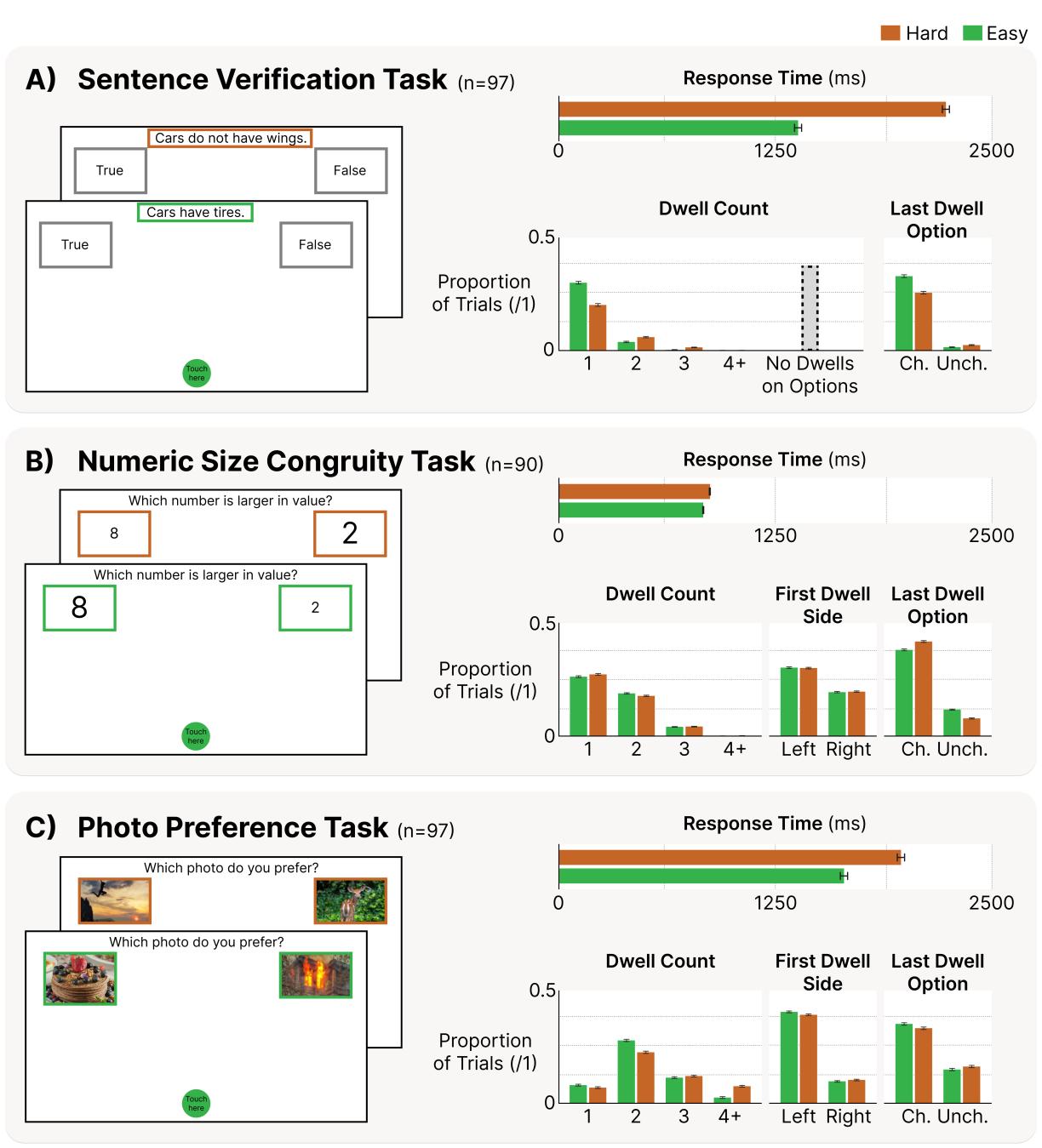


Figure 1: Examples of hard and easy decisions, alongside response time (horizontal bar graphs) and the proportion of trials (vertical bar graphs) results across the study's three tasks: A) Sentence Verification, B) Numeric Size Congruity and C) Photo Preference. Throughout, orange represents hard decisions, while green represents easy decisions. Error bars are the standard error of the difference between the hard and easy conditions. The proportion of trials data is presented as simplified marginal means, where each factor analyzed in the Repeated Measures ANOVA (RMANOVA) is presented independently across its levels (note (Ch.) means Chosen and (Unch.) means Unchosen) The Sentence Verification task includes an untested but present gaze behaviour of No Dwells on Options, indicating the proportion of trials where only the sentence received a dwell.

143 Thus, we acknowledge their presence as a predominant gaze behaviour in Sentence Verification and proceed
144 with the rest of the analysis looking only at trials having at 1 or more dwells.

145 A 2 (Last Dwell Option) x 2 (Difficulty) x 4 (Dwell Count) RMANOVA of the proportion of trials within
146 the Sentence Verification task revealed a significant three-way interaction between the tested factors (see
147 Table 1; $F(1.27,121.97) = 53.6, p < .001$). This interaction was interrogated further by splitting the data
148 into the much more common trials that ended with a dwell on the Chosen option (~60%) and those that
149 more rarely ended with a dwell on the Unchosen option (~5%). For each of these groups we ran separate 2
150 (Difficulty) x 4 (Dwell Count) RMANOVAs.

151 When we look at the three-way interaction follow-up RMANOVA for Last Dwell on Chosen we reveal
152 a significant interaction between Difficulty and Dwell Count ($F(1.29,123.74) = 56.4, p < .001$), as well as
153 significant main effects (Difficulty: $F(1.33,127.76) = 281.9, p < .001$; Dwell Count: $F(1,96) = 41.1, p <$
154 $.001$). We further followed up the two way interaction with four 1-factor RMANOVAs - one for each level
155 of Dwell Count. Here, we see significant Difficulty effects in the proportion of trials at each level of Dwell
156 Count. For last dwell on Chosen one-dwell trials, we see a higher proportion of Easy trials than Hard trials
157 ($p < .001, M_{Hard-Easy} = -0.104$), while the reverse pattern of a higher proportion of Hard than Easy trials
158 is revealed when there are two, three, and four or more dwells (all p 's $< .05$, and $M_{Hard-Easy}$ range from
159 0.00215 to 0.0192). In general, this suggests that for trials that show the commonly-occurring Last Dwell on
160 Chosen pattern, Harder trials result in more dwells than Easy trials.

161 When the Last Dwell fell on the Unchosen option (which occurred rarely, $M_{Unchosen} = 0.0434$), we
162 observed differences in the proportion of trials driven by both Difficulty ($F(1,96) = 5.19, p = .0249$) and
163 the Dwell Count ($F(1.17,112.37) = 61.16, p < .001$), but not their interaction ($F(1.22,116.65) = 1.99, p =$
164 0.1582). The proportion of Hard trials was slightly higher than that of Easy trials ($M_{Hard-Easy} = 0.0024$),
165 and all pairwise comparisons between the number of dwells yielded significant results (all p 's $< .05$), with the
166 proportion of trials following a pattern of one-dwell $>$ two-dwells $>$ three-dwells $>$ four or more dwells. The
167 results suggest that participants have very few trials with multiple dwells in this task and that the relatively
168 rare gaze pattern where the eyes end on the Unchosen option occurs slightly more on Hard trials than Easy
169 trials.

170 Overall, Fig 1A highlights the general gaze patterns elicited by the Sentence Verification task: while
171 sometimes there was no gaze upon the choice options, when it did happen, it was usually only once, and
172 almost always on the chosen option. However, in the relatively infrequent number of trials where the gaze
173 dwelled more than one time on the options, this occurred more often on hard trials.

174 2.2.2 Numeric-Size Congruity Task

175 We explored the proportion of trials in Numeric-Size Congruity with a 2x2x2x4 RMANOVA (Last Dwell
176 Option x First Dwell Side x Difficulty x Dwell Count). Two significant three-way interactions were revealed
177 (these were the highest order significant interactions): Last Dwell Option x Difficulty x Dwell Count (see
178 Table 1; $F(1.85,164.29) = 22.2812, p < .001$) and Last Dwell Option x First Dwell Side x Dwell Count
179 ($F(2.26,201.05) = 18.0261, p < .001$).

180 To follow-up the Last Dwell Option x Difficulty x Dwell Count interaction, like the Sentence Verification
181 follow-up, we looked at Difficulty x Dwell Count at each Last Dwell Option level separately. Again,
182 participants were much more likely to end the trial by looking at the Chosen (~80%) as compared to the
183 Unchosen (~20%) option. Following up the three-way interaction for the more common last dwell on Chosen
184 gaze pattern, we uncovered a two-way interaction between Difficulty and Dwell Count ($F(1.75,155.67) =$
185 10.1, $p < .001$). The further follow-ups at each level of Dwell Count found that the interaction was driven
186 primarily by a significant Difficulty effect on one-dwell trials only. That is, there is a greater proportion
187 of single, Chosen option dwells on Hard trials compared to Easy trials ($p < .001, M_{Hard-Easy}(1Dwell) =$
188 0.0353). Overall, this result highlights the high proportion of trials where the last dwell ends on the chosen
189 option, while revealing a subtle difficulty effect in single dwell trials. We believe this difficulty effect is best
190 understood after also explaining the pattern of behaviour on Last Dwell on Unchosen trials.

191 For the less common Last Dwell on Unchosen trials, the 2x4 follow-up RMANOVA revealed a significant
192 two-way interaction ($F(1.86,165.17) = 26.9, p < .001$). Further follow-ups highlight that this is an effect
193 driven by a significantly greater proportion of Last Dwell on Unchosen trials in Easy one and two-dwell cases
194 than Hard (both p 's $< .001, M_{Hard-Easy}(1Dwell) = -0.0261, M_{Hard-Easy}(2Dwells) = -0.0133$). Last Dwell on

195 Unchosen is a less common gaze pattern as compared to Last Dwell on Chosen, but when present, it's more
196 likely to happen on Easy trials where there's only one or two dwells to the choice options. So, why are we
197 seeing fewer dwells on harder trials, opposite to what we saw in the other tasks? We speculate this has to
198 do with a unique property of the Numeric-Size Congruity task where what makes a specific trial hard is the
199 physical size of the target, which we feel is likely related to its visual discriminability. Specifically, on Hard
200 trials, your eyes have landed on a physically small but numerically large number. This smaller character
201 likely takes additional time to resolve. During this time, however, it is possible that you are also processing
202 information from the other target location [45]. On these Hard trials, the other numeral at this peripheral
203 location is numerically small and physically large. We think that it may be easier to resolve this peripheral,
204 larger target, eliminating the need for a second fixation. If we take the mirror scenario, on an Easy trial
205 your eyes land on a numerically large digit that is also physically large. Resolving this larger stimulus occurs
206 quickly. But, the peripheral target in these cases is physically small. We speculate that on some trials there
207 is too much uncertainty about the identify of the peripheral stimulus which in turn drives a second dwell to
208 its location. The net result of this is that, on some Hard trials your linger at the first location and don't
209 need a second fixation while on some Easy trials you can more quickly leave the first location but feel the
210 need to take a look at the second location.

211 Returning back to the second three-way interaction (Last Dwell Option x First Dwell Side x Dwell Count)
212 that emerged from the omnibus RMANOVA, we chose to first explore this interaction at each level of First
213 Dwell Side separately. In general, whether looking at trials where the gaze first fell on the Left option
214 (which occurred ~60% of the time) or the Right option (which occurred ~40% of the time), the results
215 are relatively similar. In both cases, a significant two-way interaction emerges between Last Dwell Option
216 and Dwell Count (First Dwell Left: $F(1.66,147.96) = 80.3, p < .001$; First Dwell Right: $F(1.74,154.92) =$
217 $149, p < .001$). Further follow-ups for each case (at each level of Dwell Count) show the same pattern: the
218 proportions of Last Dwell on Chosen trials is significantly greater than the Last Dwell on Unchosen trials
219 (all 8 final tests have p values $< .01$).

220 All together, Figure 1B summarizes these results with marginal means shown for simplicity. In the
221 Numeric-Size Congruity task, most often there were only one or two gazes upon the choice options, and in
222 both cases, the first gaze was most likely to start on the left while the last gaze was almost always on the
223 chosen option. The difficulty effects in this task were more subtle. When the gaze only landed on the chosen
224 option and stayed there, it was more likely that this happened on a hard trial than an easy trial. But, in
225 the small proportion of trials where the last dwell was on the unchosen option, there were more one and
226 two dwell gazes on easy trials than hard trials. We speculate this difficulty effect has to do with peripheral
227 processing and the visual discriminability of targets of different sizes.

228 2.2.3 Photo Preference Task

229 We tested the proportion of trials in the Photo Preference task with a 2x2x2x4 RMANOVA (Last Dwell
230 Option x First Dwell Side x Difficulty x Dwell Count) and found a significant four-way interaction between
231 Last Dwell Option, First Dwell Side, Difficulty and Dwell Count ($F(2.65,254.36) = 29.94, p < .001$). For
232 Photo Preference trials the most dominant factor was the First Dwell side with first looks to the Left (~80%)
233 being much more common than first looks to the Right (~20%). As such, our initial follow-ups to the omnibus
234 RMANOVA involved performing a 3-factor RMANOVA at each of the two levels of First Dwell Side.

235 In the more commonly-occurring trials where the First Dwell started on the Left, the three-way follow-up
236 test revealed a significant three-way interaction between Last Dwell Option, Difficulty and Dwell Count (see
237 Table 1; $F(2.57,247.20) = 30.43, p < .001$). The additional follow up two factor RMANOVAs that were
238 performed for each level of Last Dwell Option revealed further interaction effects between Difficulty and
239 Dwell Count in both tests (Last Dwell Unchosen: $F(1.98,189.71) = 4.82, p = .009$; Last Dwell Chosen:
240 $F(2.69,258.31) = 35.89, p < .001$). In the most commonly occurring First Dwell Left-Last Dwell Chosen
241 case, the two-way interaction follow-ups for each level of Dwell Count revealed a difficulty effect only for
242 two and four or more dwells. For First Dwell Left, Last Dwell Chosen, two-dwell trials, there was a greater
243 proportion of Easy trials than Hard trials ($M_{Hard-Easy} = -0.0637, p < .001$), and an opposite pattern for
244 four or more dwell trials ($M_{Hard-Easy} = 0.0312, p < .001$). In the less common First Dwell Left, Last Dwell
245 Unchosen case, when further follow-ups were performed at each level of Dwell Count, we found the two-way
246 interaction to be driven by significant differences in trials with one and four or more dwells. For one-dwell,

247 Last Dwell Unchosen, First Dwell Left trials, there was a significantly greater proportion of Easy trials than
248 Hard trials ($M_{Hard-Easy} = -0.00921$, $p = .00421$) and the opposite pattern for four or more dwell trials
249 ($M_{Hard-Easy} = 0.0138$, $p < .001$). Taken together we see that Hard trials generally shift toward having
250 more dwells (three or more) than Easy trials (one or two).

251 Shifting to the follow up analysis of the more infrequent trials where the First Dwell was to the Right,
252 the only significant effects came from the main effects of Last Dwell Option and Dwell Count (Last Dwell
253 Option: $F(1,96) = 17.502$, $p < .001$; Dwell Count: $F(2.06, 197.43) = 24.566$, $p < .001$). All the pairwise
254 comparisons were significant, with a greater proportion of First Dwell Right and Last Dwell Chosen trials
255 than First Dwell Right and Last Dwell Unchosen trials ($M_{Chosen-Unchosen} = 0.00791$, $p < .001$), and, when
256 the First Dwell started on the Right, a pattern of greater proportions of two-dwells than one-dwell than
257 three-dwells than four or more dwells (all p 's $\leq .01689$).

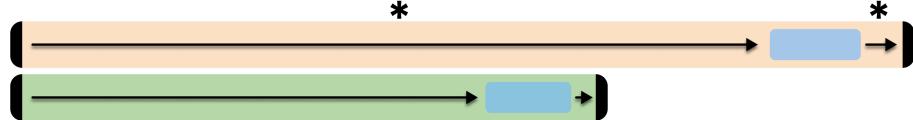
258 Figure 1C highlights the dominant gaze patterns evident during the Photo Preference task. Most often,
259 participants looked at each option at least once, almost always starting on the left and ending on whichever
260 option they chose. Decision difficulty inflated the number of dwells, with participants more likely to make
261 more dwells if the decision was harder.

262 2.3 Gaze Dynamics: Driven early by stereotyped information gathering, af- 263 fected later by decision difficulty

264 We used our proportion of trials analyses to guide an in depth exploration of gaze dynamics for the most
265 commonly occurring gaze patterns in each task. This ensured adequate statistical power and allowed us to
266 fully represent the dramatic ways gaze patterns differed across tasks. The analyses presented in the current
267 section focused on the temporal aspects of gaze patterns and specifically examined how these dynamics varied
268 with decision difficulty. We operationalized the gaze dynamics into timing metrics to describe the onset and
269 duration of a dwell, as well as the time from the end of the dwell to the end of the trial (where the trial
270 ended upon the cursor entering the chosen option). In cases where the most frequent gaze pattern involved
271 more than 1 dwell, we also measured the onset and duration of the second or last dwell, as well as the time
272 between dwell events. Across the three tasks, we analyzed 21 gaze dynamics metrics. We conducted paired
273 t-tests comparing the Hard and Easy Difficulty conditions for each metric. To account for the potential
274 impact of multiple comparisons, we adjusted the significance level to $p = .05/21 = .00238$. We fully report
275 the results of these twenty-one gaze metrics in Table 2.

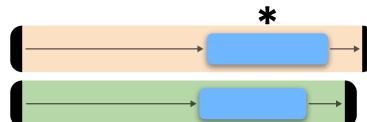
276 2.3.1 Sentence Verification Task

277 The most common gaze behaviour observed during the Sentence Verification task was either no dwell on
278 any choice option or a single dwell on the chosen option. As mentioned earlier, we did not investigate gaze
279 dynamics for the no dwell on option trials. To examine the gaze behaviour on single dwell trials, we analyzed
280 three metrics: First Dwell Onset, First Dwell Duration, and End Dwell to Response (see Figure 2A). In the
281 Sentence Verification task, irrespective of decision difficulty, there was no difference in the duration of the
282 dwell on the chosen option. However, for both First Dwell Onset, and the time from the end of the dwell up
283 to the response (End Dwell to Response), Hard decisions elicited significantly longer latencies (see Table 2).

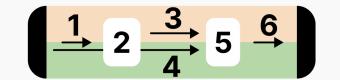

284 While we know that Response Times are longer for hard decisions (see above), these gaze dynamics
285 suggest that the additional time is not simply due to an elongated timeline for all components of a Hard
286 decision. Rather, in this particular task, where decision-relevant information resides outside of the choice
287 options, more time is spent reading the sentence for Hard decisions before the gaze moves to the chosen
288 options (approximately 700 ms). But, the chosen option itself does not require extensive viewing as the
289 'True' and 'False' options maintain a consistent position throughout the task. Hence this dwell time does
290 not differ between Hard and Easy trials. However, after the gaze leaves the chosen option, a harder decision
291 requires more time to complete compared to an easier decision. This suggests that there is further cognitive
292 processing involved in resolving the decision before the mouse cursor lands in the chosen option. We discuss
293 this finding in light of our parallel mouse-tracking study (Ouellette Zuk et al., 2023) in the Discussion.

Last Dwell (%, SD)	Dwells Count	Difficulty		Hard-Easy				
		Hard	Easy	<i>M</i>	<i>SE</i>	df	<i>F</i>	<i>p</i>
Sentence Verification								
Chosen (58.78%, 27.53%)	1	0.181	0.286	-0.104	0.013	1,96	64.8	***
	2	0.057	0.038	0.019	0.006	1,96	10.9	**
	3	0.015	0.006	0.009	0.003	1,96	11.5	**
	4+	0.002	5.52e-4	0.002	9.83e-4	1,96	4.8	*
Unchosen (4.33%, 4.76%)	-	0.006	0.004	0.002	0.001	1,96	5.2	*
Numeric-Size Congruity								
Chosen (80.10%, 10.78%)	1	0.230	0.195	0.035	0.008	1,89	20.1	***
	2	0.144	0.143	0.002	0.006	1,89	0.08	n.s.
	3	0.042	0.042	4.32e-4	0.003	1,89	0.02	n.s.
	4+	0.003	0.003	4.82e-4	9.79e-4	1,89	0.24	n.s.
Unchosen (19.90%, 10.78%)	1	0.044	0.070	-0.026	0.004	1,89	49.0	***
	2	0.034	0.048	-0.013	0.003	1,89	16.5	***
	3	0.002	0.001	0.001	8.09e-4	1,89	2.7	n.s.
	4+	0.00	0.00	0.00	0.00	1,89	NaN	NaN
Photo Preference (only Left Start; 79.66%, 22.43%)								
Chosen (55.17%, 19.54%)	1	0.032	0.029	0.003	0.005	1,96	0.44	n.s.
	2	0.087	0.150	-0.064	0.007	1,96	74.1	***
	3	0.091	0.088	0.003	0.007	1,96	0.16	n.s.
	4+	0.053	0.022	0.031	0.006	1,96	27.9	***
Unchosen (24.48%, 13.05%)	1	0.008	0.017	-0.009	0.003	1,96	8.6	**
	2	0.089	0.079	0.010	0.007	1,96	1.9	n.s.
	3	0.016	0.017	-0.001	0.004	1,96	0.13	n.s.
	4+	0.016	0.002	0.014	0.003	1,96	18.5	***

Table 1: Proportion of trials results from each task's three-way interaction involving Difficulty as a factor. Note. **p* < .05; ***p* < .005; ****p* < .0005

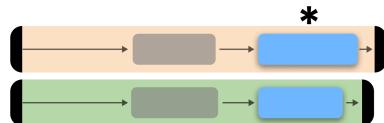

A) Sentence Verification Task

1 Dwell, Last Dwell on Chosen: (n=89)

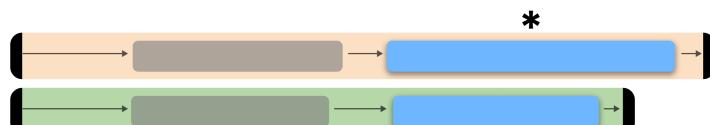


B) Numeric-Size Congruity Task

1 Dwell, Last Dwell on Chosen: (n=90)



Hard Chosen Dwell
Easy Other Dwell


- 1 First Dwell Onset
- 2 First Dwell Duration
- 3 Transition Duration
- 4 Last Dwell Onset
- 5 Last Dwell Duration
- 6 End Dwell to Resp.

2 Dwells, Last Dwell on Chosen: (n=88)

C) Photo Preference Task

2 Dwells, First Dwell on Left, Last Dwell on Chosen Right: (n=80)

2 or more Dwells, Last Dwell on Chosen: (n=95)

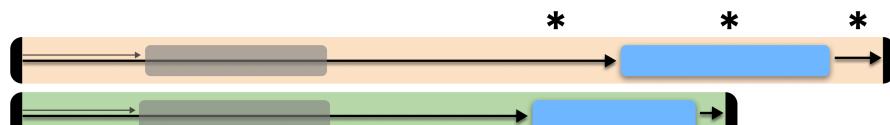


Figure 2: Gaze dynamics of the most common dwell patterns across the three decision tasks. Each pattern is depicted for hard and easy decisions, with every decision shown within a horizontal orange (hard) or green (easy) bar. All gaze patterns are aligned to the moment choice options are presented. Arrows are used to indicate the onsets and offsets of dwells, while the blue bar shows the dwell duration on the chosen option, and the grey bar shows the dwell duration on the other option for patterns where there is more than one dwell. Any significant differences between the gaze metrics of hard and easy trials are indicated with a star (*) and an opaque bar or thicker arrow. Insignificant differences are shown as transparent bars or thin arrows. For the Photo Preference 2 or more dwells plot, only the first and last dwell are depicted, but the results include trials where there would be additional dwells. Detailed means and statistics are available in Table 2.

294 2.3.2 Numeric-Size Congruity Task

295 For Numeric-Size Congruity we analyzed the two most prevalent gaze behaviours: a single dwell on the
296 chosen option, and two dwells with the last dwell on the chosen option. Interestingly, in contrast to Sentence
297 Verification, the effect of difficulty on gaze pattern timing in single dwell trials was entirely different. Figure
298 2B illustrates that the only significant difference between Hard and Easy trials was found in the dwell
299 duration of the single fixation, with Hard trials eliciting longer dwells than Easy trials (see Table 2). In this
300 task, since the decision-relevant information is located at the choice option, the effects of decision difficulty
301 are primarily expressed in the time required to visually acquire this information.

302 Further insights about the decision-making process are gained when exploring the two-dwell pattern with
303 the last dwell on the chosen option. In these trials, we segmented the pattern into 5 constituent metrics:
304 time to first dwell, first dwell duration, time between dwells, second dwell duration and second dwell offset
305 to response. Remarkably, only the duration of the second (and last) dwell showed a significant effect of
306 decision difficulty (see Table 2). This indicates that in two-dwell trials, both Hard and Easy trials exhibit
307 the same initial dwell gaze pattern up until the second, and chosen, choice option is viewed. Only at this
308 point, does the gaze tend to dwell longer on average for Hard decisions, suggesting that additional time is
309 needed to process and integrate the decision-related information obtained from both options.

310 2.3.3 Photo Preference Task

311 To capture the unique gaze behaviours specific to Photo Preference, we examined two distinct patterns:
312 the highly stereotypic gaze pattern of two dwells with the first dwell on the left and the last dwell on the
313 chosen (and right) option, as well as a broader set of patterns involving more than one dwell where the last
314 dwell was on the chosen option. Similar to the Numeric-Size Congruity task, we analyzed five metrics for
315 two-dwell, first-dwell-left, last-dwell-chosen trials. Once again, we found significant effects of difficulty only
316 in the second (and last) dwell, with Hard trials resulting in dwells significantly longer than Easy trials (see
317 Table 2). Figure 2C illustrates this pronounced difference, and we later discuss how the form of this decision
318 information (colorful photos) and the type of decision required (preference) likely contribute to this finding.

319 Lastly, we also examined decision difficulty in Photo Preference across all gaze patterns involving more
320 than one dwell (trials with two, three or four or more dwells) where the last dwell fell on the chosen
321 option. Here, we still analyzed five metrics, but with adjustments: metrics were anchored to the 'last' dwell
322 (whether it was the second, third, fourth or more), and the measure of time between the two dwells was
323 replaced with the onset time of the last dwell relative to the start of the trial. This is depicted in Figure
324 2C. In these analyses, we observed significant differences between Hard and Easy trials in the duration of
325 the last dwell, the onset of the last dwell, and the offset of the last dwell to the response (see Table 2).
326 Hard trials consistently exhibited longer latencies in all three metrics. As these tests were performed on
327 aggregated data from two, three, four, or more dwells, the onset of the last dwell aligns with the results from
328 the proportion of trials, where Hard Photo Preference trials had a greater proportion of trials with more
329 dwells compared to Easy trials. Once again, the duration of the last dwell provided evidence that it was not
330 exclusively the 'second' dwell but rather the 'last' dwell affected by decision difficulty. Further, the impact of
331 decision difficulty extended beyond the last gaze, as Hard decisions appeared to require additional time for
332 resolution, consistent with the longer movement times in Ouellette Zuk et al.'s study (2023). Perhaps most
333 interestingly, just like the Size-Congruity task, the timing of the first dwell was not impacted by decision
334 difficulty. That is, in terms of both onset and duration, the first dwell is highly stereotyped, suggesting that
335 decision competition doesn't really begin until all decision information has been sampled.

336 3 Discussion

337 In this study we collected data from a remote cohort of participants performing three different binary
338 choice tasks while recording gaze behaviour via webcam eye-tracking. This paper serves as a companion to
339 Ouellette Zuk et al. (2023) which details how decision-dynamics play out for the same three tasks when
340 measured by mouse-tracking. Both papers rely on previously published works [10, 12, 26] that identified
341 trials with hard or easy decisions. Briefly the three tasks were: A Sentence Verification task where you
342 determined whether a statement was true or false (difficulty was manipulated through sentence negation);

Measure	<i>M</i>		Hard-Easy				
	Hard	Easy	<i>M</i>	<i>SE</i>	df	<i>t</i>	<i>p</i>
Sentence Verification							
1 Dwell on Chosen							
First Dwell Onset (ms)	1857	1149	708	41.5	88	17.0	***
First Dwell Duration (ms)	227	214	13	11.8	88	1.1	n.s.
End Dwell to Response (ms)	89	42	46	14.5	88	3.2	*
Numeric-Size Congruity							
1 Dwell on Chosen							
First Dwell Onset (ms)	448	429	19	9.0	89	2.1	n.s.
First Dwell Duration (ms)	302	267	35	8.2	89	4.3	**
End Dwell to Response (ms)	74	83	-9	6.5	89	-1.4	n.s.
2 Dwells with the Last Dwell on Chosen							
First Dwell Onset (ms)	263	263	-0.5	8.3	87	-0.1	n.s.
First Dwell Duration (ms)	207	217	-10	4.9	87	-2.0	n.s.
Transition Duration (ms)	150	140	10	6.4	87	1.6	n.s.
Last Dwell Duration (ms)	248	211	37	8.9	87	4.2	**
End Dwell to Response (ms)	36	29	7	3.3	87	2.0	n.s.
Photo Preference							
2 Dwells with the First Dwell on Left, and the Last Dwell on the Right Chosen							
First Dwell Onset (ms)	282	272	10	17.7	79	0.6	n.s.
First Dwell Duration (ms)	524	494	30	48.6	79	0.6	n.s.
Transition Duration (ms)	156	131	25	10.7	79	2.4	n.s.
Last Dwell Duration (ms)	719	514	205	35.6	79	5.7	***
End Dwell to Response (ms)	51	39	12	8.9	79	1.3	n.s.
2 or More Dwells with the Last Dwell on Chosen							
First Dwell Onset (ms)	295	282	13	9.5	94	1.4	n.s.
First Dwell Duration (ms)	454	477	-23	13.2	94	-1.8	n.s.
Last Dwell Onset (ms)	1482	1261	221	31.2	94	7.1	***
Last Dwell Duration (ms)	521	407	114	19.1	94	6.0	***
End Dwell to Response (ms)	117	59	57	14.1	94	4.1	**

Table 2: Pairwise comparisons between hard and easy trials for all gaze metrics. Note. Gaze dynamics were tested at an alpha level of $.05/21 = .0023809$. * $p < .0023809$; ** $p < .0001$; *** $p < .00001$

343 A Numeric-Size Congruity task where you determined which of two digits was numerically larger (difficulty
344 was manipulated through the congruence of physical and numerical size); and a Photo-Preference task
345 where you determined which of two photos you preferred (difficulty was manipulated by the pleasantness-
346 similarity between the two photos). In general, hard choices take longer to resolve than easy choices, a
347 finding we report in the companion paper and replicate here in our analysis of Response Times (see Figure
348 1). However, response time is a coarse measure that cannot reveal any of the underlying decision processes.
349 Similarly, though it is able to fill in the gap about the effects of decision-difficulty on decision processes
350 *after* a movement is initiated, mouse-tracking (e.g., Ouellette Zuk et al., 2023) is blind to decision processes
351 arising *prior* to movement onset. Thus, the primary objective of this study was to examine how decision
352 difficulty manifests in gaze dynamics - a measure capable of indexing decision processes from the moment of
353 stimulus onset.

354 In order to investigate gaze dynamics it was first necessary to more broadly categorize gaze patterns -
355 the series of looks (dwells) the eyes made on certain targets relevant to a decision. For example, it would
356 be meaningless to examine the dynamics of a second-dwell for a task where this rarely occurred. We first
357 examined trial characteristics including number of dwells, the side of space of the first dwell and whether the
358 last dwell was toward the chosen target, calculating the proportion of trials observed for each gaze pattern
359 and whether they occurred in hard or easy trials. This analysis of common patterns first revealed a task-
360 general difficulty effect whereby more dwells were observed on harder trials. Second, and more importantly, it
361 also highlighted distinct and unique gaze patterns observed *between* tasks. While the first paper in this series
362 (Ouellette Zuk et al., 2023) demonstrated the consistency of decision difficulty effects between tasks, here
363 the proportion of trials analysis exposed a relationship between gaze behaviour and the spatial distribution
364 of decision information within a task.

365 In the Sentence Verification task all of the decision information is contained in a statement at the top-
366 middle of the screen with no unique information contained at the left or right choice options (the “True”
367 and “False” labels at these locations remained constant). As such, the dominant gaze behaviour in this task
368 contained either no looks toward the choice options or a single look toward the option that was selected.
369 On the trials with one dwell on the chosen option, we found that the duration of that dwell remained the
370 same for both hard and easy trials. Instead, the effects of decision difficulty emerged in the time it took
371 for the dwell to start, and the time from the end of the dwell to the response. In this task we can infer
372 that the gaze was focused on the sentence, and as the sentence contained all of the decision information,
373 the differentiation between hard and easy trials emerged prior to any look towards the response options. In
374 the case where a subsequent look to the chosen target occurs, the constant dwell duration seen regardless
375 of decision difficulty suggests that this gaze might only serve the difficulty-independent process of spatially
376 guiding the mouse response. However, after the gaze leaves the chosen option, difficulty effects re-emerge,
377 suggesting that additional cognitive processing may be required beyond the choice-option dwell to finalize
378 the decision.

379 In the Numeric-Size Congruity task, unlike Sentence Verification, the information necessary to make a
380 decision is contained at the choice options. However, this task has the interesting property that sometimes
381 a single fixation toward a choice option is sufficient to make a decision (e.g., if your eyes dwell on the digit
382 “1” or “9” you can definitively know it is the lower or higher numeric value respectively) while other times a
383 single dwell is insufficient (e.g., if you eyes dwell on the digit “2” or “8” fixating the other target is necessary
384 to make a definitive decision). Given this, it is logical that the dominant gaze patterns observed in this task
385 are divided into trials with only a single dwell and trials with two dwells. When examining the single dwell
386 on chosen trials of the Numeric-Size Congruity task, difficulty effects manifest in a manner wholly opposite
387 to that of the Sentence Verification task. Specifically, when participants focus only on the chosen option,
388 they spend significantly more time dwelling on it during hard trials compared to easy trials. This prolonged
389 dwell on the incongruent yet correct choice option is the only metric in the Numeric-Size Congruity task
390 where difficulty effects become evident. Neither the onset of the first dwell nor the offset to response show
391 any changes with difficulty. This begins to fill in the picture of how eye gaze functions with respect to
392 decision difficulty - at the moment when sufficient information about the decision has been acquired via eye
393 gaze then, and only then, does difficulty begin to differentially affect the decision timeline.

394 This hypothesis of gaze distribution being tied to information acquisition receives additional support from
395 the two-dwell trials in the Numeric-Size Congruity task. Here we observe an intriguing pattern whereby the
396 gaze dynamics of hard and easy trials appear identical all the way until the second dwell, where then, and

397 only then, do hard trials exhibit a significantly longer duration for the last dwell compared to easy trials.
398 Following this extended second dwell, the time to the response is comparable for both difficulty conditions.
399 Thus, all the effects of decision difficulty for this set of trials are reflected exclusively in the last dwell,
400 where determining the correctness of a numerically large but physically small (i.e., incongruent) choice
401 option requires more dwell time compared to a numerically large and physically large (i.e., congruent) choice
402 option. Perhaps most importantly, the first dwell, which is predominantly directed towards the unchosen
403 option, does not take longer in the hard condition. It is only when participants view both choice options,
404 and therefore have acquired all the necessary decision information, that difficulty effects emerge.

405 Finally in the Photo Preference task, decision information is necessarily and evenly distributed between
406 both choice targets. That is, you can't make a determination of comparative preference between two photos
407 without having your eyes dwell on both of them. Accordingly, when examining the most common gaze
408 patterns in the Photo Preference task, they all involve two or more dwells with the single most common
409 pattern being a look to the left, unchosen target followed by a look toward the right, chosen target. Focusing
410 on this specific two-dwell pattern, the results follow the structure outlined in the Numeric-Size Congruity
411 task. That is, the difficulty effect emerges exclusively in the last dwell duration of these Photo Preference
412 trials. Like before, a hard trial does not exhibit signs of being difficult until the second, chosen option is
413 viewed.

414 These results are confirmed in our broader investigation of Photo Preference trials with two or more
415 dwells (e.g., trials with two, three, four or more dwells). Again, we consistently observed difficulty effects
416 in the latter half of the trial, with hard trials showing a longer duration for the last dwell, as well as later
417 onsets of the last dwell and longer durations between the last dwell and the response. This broader result
418 shows the consistency of the difficulty effect on the duration of the last dwell, while the prolonged onset of
419 the last dwell on hard trials likely results from averaging trials with a higher dwell count. Of note, the time
420 from the offset of the last dwell to the response should not be conflated with the number of dwells in the
421 same way. Instead, it suggests that this broader set of trials, with more dwells in harder trials, may more
422 clearly capture decisions with lingering uncertainty. In other words, if harder trials take longer and more
423 dwells cost more time, this set of trials may reflect the more challenging choices where difficult decisions are
424 still being resolved all the way until the final choice occurs.

425 Taken together, the analysis of gaze behaviour across these three binary choice tasks sheds light on the
426 dynamics of decision making. It appears there are at least two processes at play - the gathering of decision
427 information and the resolution of the decision. While these two aspects of the decision can likely proceed
428 in parallel, our data suggest that information gathering is the predominant driver of gaze early in trials
429 and proceeds largely without impact from the specific demands of decision difficulty until all the relevant
430 information has been at least partially sampled. Moreover, information gathering appears to be highly
431 stereotyped for a given task. This is most evident in the Photo Preference trials - when information was
432 evenly distributed across two locations, the vast majority of dwells were directed first to the left, and then
433 to the right. This aligns with gaze-focused decision models trained on behavioral data from similar binary
434 choice preference tasks [28, 42, 5]. These models assume a left-first gaze, highlighting the persistent influence
435 of ingrained eye movements used in reading left to right (at least in the English-speaking population tested).
436 Additional evidence for the stereotyped nature of information gathering is seen in the first dwell dynamics
437 on trials with more than one dwell (Numeric-Size Congruity and Photo Preference). Here, the time to first
438 dwell and first dwell durations are not impacted by decision difficulty.

439 This suggests that there is a level of dynamics involved in decision making that most models don't
440 capture. That is, most decision-models simulate a dynamic decision using a series of static parameters - for
441 example the rate at which evidence for an option accumulates and the bound to which it must accumulate
442 to in order for it to be chosen. However, here we show that the parameters themselves are likely changing
443 throughout a decision. Specifically, we argue that the value of a given choice option necessarily fluctuates
444 as the decision shifts from information gathering to decision resolution. Consider the Photo Preference
445 task. Initially a target's value is dictated by its ability to deliver new information (for a review of this
446 idea, see [20]), separate from its content (e.g., pleasantness). Thus, both targets are equally valuable and
447 the eyes adopt a stereotyped left-to-right pattern of information sampling. But then, target-value shifts to
448 being defined by the details of the image. Now, the pleasantness of each option, and critically the relative
449 pleasantness between options, dictates the resolution of the decision. This ability to shift decision parameters
450 based on the current task context can explain both of our major gaze dynamic findings: initial dwells are

451 stereotypical, driven by information gathering and not affected by decision difficulty, while the last dwells are
452 affected by decision difficulty since value during decision resolution is determined by the relative difference
453 in task-relevant content between targets.

454 Understood this way, it is clear that multiple facets of a target determine its value: if it contains task-
455 relevant information, if it has been looked at, if it is an image or text, if it is small or large, if it is easily
456 identified or not. Equally clear is that which facets are of value changes over time. Across our two studies
457 we can measure the value transition from information gathering to decision resolution - a specific example
458 of the more general pattern of explore versus exploit behaviors [8]. Since a key aspect of exploration is the
459 physical location of targets, eye-tracking is particularly well suited to measure these kinds of information
460 gathering behaviours. Then, as a decision shifts to resolution, which typically demands a motor response,
461 mouse-tracking becomes a sensitive tool for watching the later stages of competition play out across time
462 and space. Together, this highlights the complementary approaches taken across our two companion papers:
463 gaze behaviour is acutely sensitive to task differences, especially early in trials and with respect to the spatial
464 distribution of decision-relevant information, while mouse tracking is more sensitive to the decision difficulty
465 effects that appear once all relevant information has been sampled.

466 We believe a cross-paper comparison of difficulty effects between tasks offers some initial support for this
467 idea. Arguably, the gaze dynamics during Sentence Verification are the least informative - many trials have
468 no dwells at the site of a choice and those that do, don't have dwell durations that differentiate between
469 hard and easy trials. In complete contrast, as we report in our companion paper (Ouellette Zuk et al., 2023),
470 during-movement measures of movement time and trajectory strongly differentiate between hard and easy
471 trials for the same task. On the other end of the spectrum, the current analysis of gaze patterns in the Photo
472 Preference task offers rich information about the contemplation of decision options, including many trials
473 with multiple dwells. But, this same task in our companion paper (Ouellette Zuk et al., 2023) shows that
474 during-movement measures had, relative to the other tasks, the least sensitivity to decision-difficulty. Not
475 only does this show why collecting gaze and movement data is important, it also has theoretical implications.
476 We previously made the distinction between gathering and resolving decision information - related processes
477 that can sometimes proceed in parallel. We speculate that tasks like Photo Preference which require longer
478 times spent gathering information are thereby also granted extra time to start resolving a decision prior to
479 movement onset. As a result, movement related measures in these kinds of tasks show less sensitivity as
480 more of the decision has been completed prior to the initiation of a response.

481 Aside from their impressive combined ability to cover the full range of a decision - from stimulus onset
482 to response completion - there is another, methodological link between our two companion papers: their
483 use of remote data collection. Not only did it vastly increase the sample size of our studies (more than 400
484 data sets initially collected across the two papers) it also made the study accessible to participants who may
485 not typically participate in academic research (see supplementary material in Ouellette Zuk et al., 2023).
486 Maybe most importantly, it also allowed us to test participants in more ecologically-valid environments. That
487 is, we can collect data from people using their own devices from the comfort of their own homes without
488 introducing an artificial, isolated, and highly-controlled laboratory setting that likely limits our ability to
489 capture realistic and natural human behaviour [25, 41].

490 4 Limitations and Conclusion

491 Together, this paper series demonstrates the power of remote, online methods as tools for deeply under-
492 standing the complete, dynamic and continuous decision process, rewinding the decision from the typically-
493 collected final choice response, all the way back to the first glance. Combined, our studies reveal an incredibly
494 robust set of findings, on smartphones, tablets and computers with mouse-tracking or eye-tracking across
495 three unique decision tasks we can measure and decompose the effects of decision difficulty with precision.

496 Of course, full remote data collection is not without its limitations, some which are particularly evident
497 in the current study. Most notably, there are known spatial and temporal inaccuracies when using webcam
498 eye-tracking. As an example, we did not feel we had sufficient spatial accuracy to properly analyze nuanced
499 reading behaviour during the initial dwells to the statement in the Sentence Verification task. This limitation
500 also led to an unforeseen and unfortunate outcome - due to the sampling rate slowdown caused by prioritizing
501 the collection of webcam eye-tracking, our mouse-tracking data in the current study was not sufficiently

502 sampled to perform a confirmatory analysis of the effects reported in our companion paper (Ouellette Zuk et
503 al., 2023). Finally, at present, webcam eye-tracking is generally restricted to participants using a computer
504 with a webcam - it hasn't yet been widely used with sufficient accuracy on mobile devices in decision science
505 research.

506 These limitations, however, are the type which seem likely to be overcome soon. Improved and more
507 efficient gaze detection driven by ever-improving machine learning models, continued advancements in con-
508 sumer hardware, and the use of mobile device cameras for eye-tracking research (e.g., [34]) are all on the
509 imminent horizon [24]. And in that future, we envision using gaze and movement tracking will be paramount
510 to understanding participant behaviour in and out of the lab. Importantly, as we advocate for moving into
511 unrestricted domains - where the nature of the task and the decisions that people make are not controlled by
512 an experimenter - we recognize the need for and strength of this combined metrics approach. Including both
513 gaze and movement analysis allows you to understand both where the most relevant decision information is
514 located via eye-tracking, and via motion-tracking, how difficult it is to adjudicate between that information
515 to arrive at and perform the final movement required to enact a choice.

516 5 Methods

517 5.1 Participants

518 100 adults provided their informed consent to participate in the experiment, and completed the study in full.
519 Of the 100 participants, 36 self-identified as female, 66 as male, and one participant preferred to not disclose
520 their gender. The average participant age was 25.47 years old (+/- 4.28). Participants were recruited using
521 Prolific (www.prolific.co), an online crowdsourcing platform, where we followed Ouellette Zuk et al.'s (2023)
522 participant restrictions on age (18 to 35 years old), and prior approval rating on the platform (95-100%).
523 We paid participants for their time (6 GBP per hour, ~\\$10 CAD per hour). All experimental proceedings
524 were approved by the University of Alberta's Research Ethics Board (Pro00087329) and were performed in
525 accordance with relevant guidelines and regulations.

526 5.2 Materials

527 All participant data for the study was collected through the use of Labvanced [13], an online, browser-
528 based Javascript experimentation platform. We designed our study in a 800 x 450 pixel coordinate frame in
529 Labvanced (see Figure 3B), where it would automatically scale to the size of the participant's screen. We
530 used Labvanced's built-in webcam eye-tracking (Labvanced v2 High Sampling Mode eye-tracking [13]). To
531 ensure high-quality data collection, certain minimum requirements were imposed. Participants were required
532 to use either a laptop (n = 75) or desktop (n = 25) computer with a mouse. The operating systems supported
533 were Mac (n = 15), Windows (n = 84) or Linux (n = 1), along with the Chrome browser. Furthermore,
534 participants were required to have a webcam with a minimum resolution of 1280 x 720 pixels, a landscape-
535 oriented screen with a minimum resolution of 600 x 600 pixels (*Mode* = 864 x 1536 px), and a computer
536 system capable of collecting at least 10 samples per second of the head's position for optimal eye-tracking
537 precision ($M = 15.65$ Hz, $SD = 5.69$ Hz). This system threshold was often met if participants had a graphics
538 card and had freed up system resources prior to starting the study (i.e. closing any other programs running
539 on their computer).

540 5.3 Task & Procedure

541 Broadly, the tasks and procedures followed by Ouellette Zuk et al. (2023) were repeated here but with the
542 addition of webcam eye-tracking, and with only computers being included (Ouellette Zuk et al also tested
543 tablets and smartphones). Like Ouellette Zuk et al. (2023), we asked participants to complete three distinct
544 tasks that all required decision-making in a binary choice paradigm where choices were made with mouse
545 movements. These tasks were Numeric-Size Congruity, Sentence Verification, and Photo Preference (with
546 examples shown in Figure 1).

547 Participants recruited through Prolific (www.prolific.co) were given access to a detailed description of the
548 study. This description included an approximate duration of the study (1 hour), information regarding the

549 necessary hardware, and instructions on how to avoid any potential technical difficulties (complete Prolific
550 description available in the Supplementary Materials). Upon clicking the study link that accompanied the
551 study's description, participants were directed to a full-screen Labvanced browser window and prompted
552 to grant permission for their webcam device. In the event that participants did not meet the minimum
553 requirements, they would immediately receive an error or warning message. Assuming no issues arose,
554 participants would begin by providing their informed consent to participate, after which they would proceed
555 to answer a brief survey pertaining to their demographic information and the hardware they were using.

556 Before the primary experimental tasks, participants were given information to encourage successful web-
557 cam eye-tracking data collection. Instructions about optimal lighting conditions, the re-calibration process,
558 and the virtual chinrest feature were provided to participants. Then, participants underwent Labvanced's
559 5-minute eye-tracking calibration procedure. It was required that participants redo the calibration if the
560 predicted gaze error surpassed 7% of the screen's dimensions. After completing calibration, participants
561 began the main experiment.

562 Figure 3 illustrates the experimental procedure and trial progression. Three tasks were performed (counter-
563 balanced in their presentation order), with simple task instructions preceding each task. 84 trials were
564 completed per task, with task stimuli presented in a randomized order within each task. Every 5 trials, a
565 brief seven-point eye-tracking recalibration procedure was performed to adaptively correct any drift errors
566 in the gaze prediction algorithm over the course of the experiment. At any point during an experimental
567 trial, the virtual chinrest feature would pause the trial if a participant's excessive head movement affected
568 the quality of the gaze prediction ($M = 6.59$ trials, $SD = 7.22$ trials).

569 An experimental trial began with a green circular start button labeled "Touch here" at the bottom center
570 of the screen. Participants had to move their mouse cursor to the button to initiate the trial. This prompted
571 the appearance of a three-second countdown at the center of the screen. If the mouse cursor was removed
572 from the circular button, the countdown paused until the cursor's return. In the Numeric Size-Congruity
573 and Photo Preference tasks, a task-specific question appeared at the top center of the screen during the
574 countdown (see Figure 1). Once the countdown ended, two choice boxes appeared at the upper-left and
575 upper-right corners of the screen, presenting trial-specific options. In the Sentence Verification task, two
576 choice options appeared alongside the countdown and displayed a statement at the top center of the screen
577 after the countdown completed. Participants could immediately select their choice option by moving their
578 mouse cursor inside the respective choice area. Once a choice was made, the selected box was highlighted
579 while the other choice option and start button disappeared. A "Next" button then appeared at the center
580 of the screen for participants to click to proceed to the next trial at their own pace.

581 All three tasks required binary choice decisions in Hard and Easy conditions. In the Numeric-Size
582 Congruity task, participants were presented with pairs of digits and asked to determine which digit had a
583 higher numeric value. The pairs of digits varied in congruence, where some pairs were congruent in both
584 numeric and physical size (representing Easy trials with low decision difficulty, e.g., 2 vs. 8), while others
585 were incongruent in numeric and physical size (representing Hard trials with high decision difficulty, e.g., 2 vs.
586 8). In the Sentence Verification task, participants were tasked with verifying the truthfulness of statements.
587 From previous work [10] it has been shown that statements that are true show large decision difficulty effects
588 based on whether they are non-negated (representing Easy trials with low decision difficulty, e.g., 'Cars have
589 tires') or negated (representing Hard trials with high decision difficulty, e.g., 'Cars do not have wings'). In
590 the Photo Preference task, participants were presented with pairs of photos that differed in valence (from the
591 International Affective Picture System stimulus set [31], as in [26]). They were asked to then choose which
592 photo they preferred. The pairs of photos varied in their dissimilarity of valence, with some pairs being
593 dissimilar (representing Easy trials with low decision difficulty, e.g. High vs. Low pleasantness) and others
594 being similar (representing Hard trials with high decision difficulty, e.g. High vs. High pleasantness). These
595 tasks were designed to cover a wide range of decision domains, including objective perceptual judgments (such
596 as discriminating between digits), semi-subjective conceptual judgments (such as evaluating the truth value of
597 statements), and subjective preference judgments (such as expressing a preference for specific photographs).
598 Additionally, the tasks intentionally differed in terms of stimulus characteristics and the cognitive processing
599 requirements involved.

600 The entire experimental procedure, as a Labvanced study, can be accessed via the link in Supplementary
601 Materials.

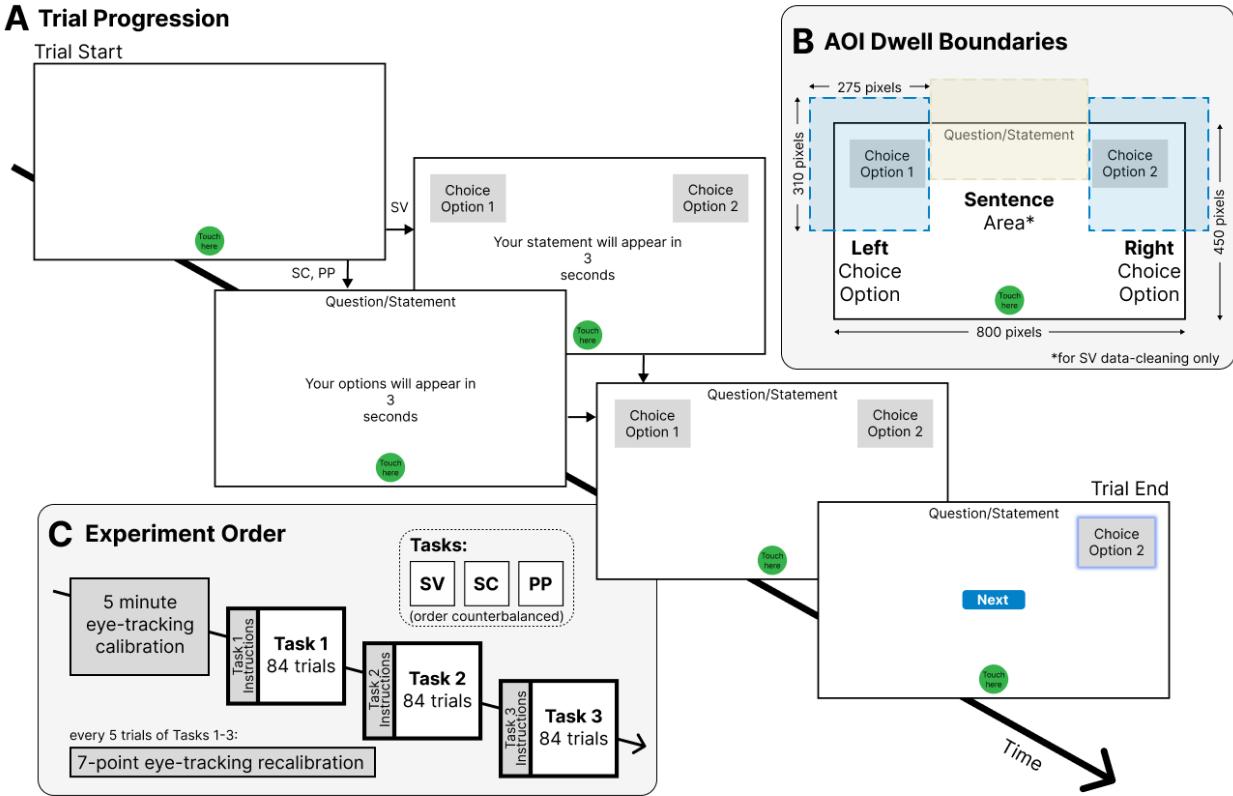


Figure 3: A) All three tasks presented a classic reach-decision paradigm requiring participants to choose one of two stimuli presented at the top left and right of their computer screen. For Numeric-Size Congruity (SC) and Photo Preference tasks (PP), countdown onset was accompanied by a question specific to the task, appearing at the top center of the display. The Sentence Verification (SV) task presented the two choice options coincident with countdown onset and presented a statement (rather than a question) upon countdown completion. Participants proceeded in a self-paced manner, pressing a button to begin the next trial. B) The enlarged areas of interest (AOIs) used to define the boundaries of the Left and Right choice options (blue transparent areas) when determining whether a dwell was made. The dimensions of the choice AOIs (275 x 310 pixels) are presented relative to the dimensions of the frame size (800 x 450 pixels). The Question/Statement AOI was used only for data-cleaning in the SV task. This frame was scaled to the size of each participant's screen. C) Overview of the experiment's design. Each participant completed an SV task, an SC task, and a PP task, with task order counterbalanced between participants. Eye-tracking calibration occurred at the beginning of the session, and a re-calibration procedure was performed every 5 trials. Task-specific instructions were presented prior to each task.

602 5.4 Data Processing

603 The uncontrolled nature of online, remote data collection, including the use of webcam eye-tracking, pre-
604 sented some data quality challenges that required thoughtful treatments. Gaze and cursor timeseries data
605 were collected in a way that maximized the number of data samples processed for each participant, with
606 priority given to the collection of gaze samples. All gaze and cursor data were then upsampled (linearly
607 interpolated) to a common sampling rate of 60 Hz. The gaze prediction algorithm was refined (i.e., recal-
608 calibrated) every 5 trials using Labvanced's adaptive drift correction method [13], therefore gaze data quality
609 varied over time. To minimize data rejection, we assessed the quality of each participant's gaze data within
610 each task independently (as opposed to rejecting an entire dataset for poor gaze data for a subset of trials).

611 Using custom MATLAB scripts and our Gaze and Movement Analysis software, our initial data cleaning
612 approach aimed to assess whether the gaze data showed reasonable patterns or whether it contained noisy,
613 spurious gaze prediction errors (see [4] for a similar approach). Using more exaggerated but still mutually-
614 exclusive boundaries (see Figure 3B - AOI Dwell Boundaries), we determined whether the gaze fell inside at
615 least one of the task-critical areas during the decision period. For the Numeric-Size Congruity and Photo
616 Preference tasks, we considered the gaze data of reasonable quality if the gaze fell within the left or right
617 choice options for at least 100 milliseconds continuously. For the Sentence Verification task, we instead used
618 at least one look (minimum 100 ms) to the sentence area as a proxy of reasonable gaze data as it was common
619 for participants to not look at the choice options. In each task, if less than half of the trials showed reasonable
620 gaze data (i.e., one dwell on a task-relevant AOI), we removed the full task from the participant's dataset for
621 analysis. Based on this criteria, from 100 participants, 3 subjects' Photo Preference task data were removed,
622 9 subjects' Numeric-Size Congruity task data were removed, and 3 subjects' Sentence Verification task data
623 were removed. Of the remaining datasets, any individual trials that failed to show reasonable gaze data
624 (per the same criteria) were removed leaving the Photo Preference, Numeric-Size Congruity, and Sentence
625 Verification tasks with 82.79 (+/-2.96), 73.41 (+/-9.58) and 81.70 (+/-5.79) of 84 trials respectively.

626 Then, to assess non-gaze-related quality of data, we employed similar rejection criteria to Ouellette Zuk
627 et al. (2023). Within each task, we removed any trials where the response time was less than 100 milliseconds
628 or greater than 3 standard deviations above the subject's mean response time in that task. We also removed
629 any trials where a pause occurred from the virtual chinrest feature, or any trials where the response time was
630 not computable (from participant error or occasional data recording issues). Further, any incorrect trials
631 were removed from the Sentence Verification and Numeric-Size Congruity tasks (where accuracy could be
632 assessed objectively). Following these additional trial rejections, we again removed entire task data from any
633 participant with less than 42 or their original 84 task trials, which resulted in one additional Numeric-Size
634 Congruity task removal. From 100 participants, the final task datasets included in analysis were: Photo
635 Preference: $n = 97$, 78.30 (+/- 5.18) trials, Numeric-Size Congruity: $n=90$, 70.87 (+/-9.16) trials, Sentence
636 Verification: $n=97$, 72.09 (+/-8.23) trials.

637 Unlike our companion paper (Ouellette Zuk et al. 2023) where cursor-tracking provided the key dependent
638 measures, high-quality gaze data from webcam eye-tracking was the primary goal of the current study. While
639 we did record mouse trajectory data alongside our gaze data, we did not have sufficient data quality to reliably
640 metricize the mouse trajectory data in the same way as Ouellette Zuk et al. (2023). With recording priority
641 given to the gaze data, and cursor movements generally being very quick, we found that there were many
642 instances that the number of data samples from the cursor were insufficient. We discuss this unintended
643 consequence in the Discussion, and encourage readers to engage with our companion paper (Ouellette Zuk
644 et al., 2023), which provides a thorough analysis of high-quality cursor and touchscreen trajectories from an
645 original sample of more than 300 other participants.

646 5.5 Dependent Measures

647 Our analysis strategy revolved around three sequential steps. First, to confirm and replicate that the main
648 decision-difficulty effects elicited by these tasks were present in the current study, for every trial we recorded
649 *Response Time (ms)*: the time from the choice options being presented to the moment the cursor was
650 detected as entering within the bounds of a choice option.

651 Second, to broadly characterize and analyze the dominant gaze patterns within each task, we calculated
652 *Proportion of Trials (%)*: a value of 0 or 1 for each trial that represented if that trial shared certain
653 characteristics (e.g. was it Hard or Easy). These counts were then aggregated such that proportion of trials

654 for a given characteristic was always calculated within each task per participant, where the trials fitting
655 the characteristic were counted and then divided by the total number of trials included in the analysis
656 (specifically, the number of Hard plus Easy trials).

657 Third, we used the results from the proportion analysis to guide our examination of the gaze dynamics
658 of the most frequent gaze patterns within each task. These gaze dynamics were centered on describing the
659 timing of specific dwell patterns - when a dwell started, how long it lasted, and when it ended relative to
660 the response. For patterns with more than one dwell, we wanted to capture this information about both
661 the first and last dwell. Using the first and last (as opposed to strictly second) dwell afforded us flexibility
662 in describing two-dwell patterns, but also three, four or more dwell patterns. In all three tasks, for every
663 gaze pattern observed (where every gaze pattern necessitated there being at least one dwell), the following
664 measures were collected:

665 *First Dwell Onset (ms)*: the time from the choice options being revealed to the start of the first dwell within
666 a choice option.

667 *First Dwell Duration (ms)*: the length of time the dwell stayed at the first choice option viewed.

668 *End Dwell to Response (ms)*: the time from the end of the final dwell to the response, as determined by the
669 mouse cursor's entry into the choice option.

670 When a frequent gaze pattern included more than one fixation (only the Numeric-Size Congruity and
671 Photo Preference tasks), the last dwell's duration was also collected:

672 *Last Dwell Duration (ms)*: the length of time the dwell stayed at the last choice option viewed preceding a
673 response.

674 To capture the time of the last dwell's onset, we used two measures, dependent on the number of dwells in
675 the gaze pattern being explored. When looking at trials with exactly two dwells, we use Transition Duration
676 as a measure, but when looking at a collection of trials with two or more dwells (Photo Preference only), we
677 use Last Dwell Onset:

678 *Transition Duration (ms)*: the time between the first and second (i.e. last, in these cases) dwells, measured
679 from the offset of the first dwell to the onset of the second dwell.

680 *Last Dwell Onset (ms)*: the time from the choice options being revealed to the start of the last (i.e. second,
681 third, fourth or more) dwell within a choice option.

682 5.6 Statistical Procedure

683 Each dependent measure was analyzed within each task using Jamovi (Version 2.2.5; an open-source statisti-
684 cal software). Response times and gaze dynamic metrics for each task were analyzed using paired t-tests of
685 each participant's Hard and Easy trial means on that given task. To correct for multiple comparisons, the
686 three response time tests were performed with an alpha of $.05/3 = .01667$, and the twenty-one gaze dynamic
687 metrics were tested with an alpha of $.05/21 = .00238$. The proportion of trials measures were tested using
688 Repeated Measures ANOVAs, where p-values were Greenhouse-Geisser-corrected for sphericity violations.
689 The Sentence Verification task was tested with a 3 factor RMANOVA, and Numeric-Size Congruity and
690 Photo Preference tasks were tested with 4 factor RMANOVAs. We followed the family-wise error correction
691 procedure from Cramer et al. [9], where the threshold for significance becomes increasingly more conser-
692 vative with every significant test result within a family of results. We treated all 3 omnibus RMANOVAs
693 as a single family to determine the significance of the omnibus results for the proportion of trials measures.
694 Follow-up RMANOVAs were then performed on the highest order interaction(s), testing each level of one
695 factor against the other factors (see section 2 - Results). This interaction procedure was performed as nec-
696 essary until a single-factor RMANOVA was reached, where the simple main effects of one factor could be
697 tested at all levels of the other factor. Significant main effects were explored with all pairwise comparisons.
698 The Cramer et al. [9] procedure was again employed for these follow-up RMANOVAs, where the family-wise
699 error correction was performed within-task (i.e. each task's follow-up tests became a family). We report our
700 results in Tables 1 and 2. Table 1 presents the per task trial proportion results from the breakdown of each
701 three-way interaction involving the factor of difficulty, and Table 2 fully reports the gaze metrics differences
702 between the Hard and Easy trials for each of our 21 gaze-dynamic measures.

703 Acknowledgments

704 This study was funded by an NSERC Discovery Grant to CSC, and a MITACS Accelerate International
705 award to JKB.

706 References

- 707 [1] Herman Aguinis, Isabel Villamor, and Ravi S. Ramani. "MTurk Research: Review and Recommendations". In: *Journal of Management* 47.4 (Apr. 1, 2021). Publisher: SAGE Publications Inc, pp. 823–837.
708 ISSN: 0149-2063. DOI: 10.1177/0149206320969787. URL: <https://doi.org/10.1177/0149206320969787> (visited on 02/08/2023).
- 711 [2] Alexander L. Anwyl-Irvine et al. "Gorilla in our midst: An online behavioral experiment builder". In: *Behavior Research Methods* 52.1 (Feb. 1, 2020), pp. 388–407. ISSN: 1554-3528. DOI: 10.3758/s13428-019-01237-x. URL: <https://doi.org/10.3758/s13428-019-01237-x> (visited on 05/29/2023).
- 714 [3] Anna Bánki et al. "Comparing Online Webcam- and Laboratory-Based Eye-Tracking for the Assessment of Infants' Audio-Visual Synchrony Perception". In: *Frontiers in Psychology* 12 (Jan. 11, 2022), p. 733933. ISSN: 1664-1078. DOI: 10.3389/fpsyg.2021.733933. URL: <https://www.frontiersin.org/articles/10.3389/fpsyg.2021.733933/full> (visited on 07/19/2022).
- 718 [4] Jennifer K Bertrand and Craig S Chapman. "Dynamics of eye-hand coordination are flexibly preserved in eye-cursor coordination during an online, digital, object interaction task". In: *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*. CHI '23: CHI Conference on Human Factors in Computing Systems. Hamburg Germany: ACM, Apr. 19, 2023, pp. 1–13. ISBN: 978-1-4503-9421-5. DOI: 10.1145/3544548.3580866. URL: <https://dl.acm.org/doi/10.1145/3544548.3580866> (visited on 05/15/2023).
- 724 [5] Jerome R. Busemeyer and James T. Townsend. "Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment". In: *Psychological Review* 100 (1993). Place: US Publisher: American Psychological Association, pp. 432–459. ISSN: 1939-1471. DOI: 10.1037/0033-295X.100.3.432.
- 728 [6] Thomas C. Cassey et al. "Adaptive Sampling of Information in Perceptual Decision-Making". In: *PLOS ONE* 8.11 (Nov. 27, 2013). Publisher: Public Library of Science, e78993. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0078993. URL: <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078993> (visited on 05/24/2023).
- 732 [7] Paul Cisek and John F. Kalaska. "Neural Mechanisms for Interacting with a World Full of Action Choices". In: *Annual Review of Neuroscience* 33.1 (June 1, 2010), pp. 269–298. ISSN: 0147-006X, 1545-4126. DOI: 10.1146/annurev.neuro.051508.135409. URL: <https://www.annualreviews.org/doi/10.1146/annurev.neuro.051508.135409> (visited on 05/30/2023).
- 736 [8] Jonathan D Cohen, Samuel M McClure, and Angela J Yu. "Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration". In: *Philosophical Transactions of the Royal Society B: Biological Sciences* 362.1481 (Mar. 29, 2007). Publisher: Royal Society, pp. 933–942. DOI: 10.1098/rstb.2007.2098. URL: <https://royalsocietypublishing.org/doi/10.1098/rstb.2007.2098> (visited on 05/31/2023).
- 741 [9] Angélique O. J. Cramer et al. "Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies". In: *Psychonomic Bulletin & Review* 23.2 (Apr. 1, 2016), pp. 640–647. ISSN: 1531-5320. DOI: 10.3758/s13423-015-0913-5. URL: <https://doi.org/10.3758/s13423-015-0913-5> (visited on 05/24/2023).
- 745 [10] Rick Dale and Nicholas D. Duran. "The Cognitive Dynamics of Negated Sentence Verification". In: *Cognitive Science* 35.5 (2011). _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-6709.2010.01164.x>, pp. 983–996. ISSN: 1551-6709. DOI: 10.1111/j.1551-6709.2010.01164.x. URL: <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01164.x> (visited on 05/30/2023).

749 [11] Dror Dotan et al. "Track It to Crack It: Dissecting Processing Stages with Finger Tracking". In: *Trends in Cognitive Sciences* 23.12 (Dec. 1, 2019), pp. 1058–1070. ISSN: 1364-6613. DOI: 10.1016/j.tics.2019.10.002. URL: <https://www.sciencedirect.com/science/article/pii/S1364661319302372> (visited on 05/30/2023).

750 [12] Thomas J. Faulkenberry et al. "Response trajectories capture the continuous dynamics of the size congruity effect". In: *Acta Psychologica* 163 (Jan. 1, 2016), pp. 114–123. ISSN: 0001-6918. DOI: 10.1016/j.actpsy.2015.11.010. URL: <https://www.sciencedirect.com/science/article/pii/S0001691815300822> (visited on 05/30/2023).

751 [13] Holger Finger et al. "LabVanced: a unified JavaScript framework for online studies". In: *International Conference on Computational Social Science* 1.1 (2017), pp. 1–3.

752 [14] Jonathan B. Freeman. "Doing Psychological Science by Hand". In: *Current Directions in Psychological Science* 27.5 (Oct. 1, 2018). Publisher: SAGE Publications Inc, pp. 315–323. ISSN: 0963-7214. DOI: 10.1177/0963721417746793. URL: <https://doi.org/10.1177/0963721417746793> (visited on 05/30/2023).

753 [15] Jason P. Gallivan et al. "Decision-making in sensorimotor control". In: *Nature Reviews Neuroscience* 19.9 (Sept. 2018). Number: 9 Publisher: Nature Publishing Group, pp. 519–534. ISSN: 1471-0048. DOI: 10.1038/s41583-018-0045-9. URL: <https://www.nature.com/articles/s41583-018-0045-9> (visited on 05/30/2023).

754 [16] Mackenzie G. Glaholt and Eyal M. Reingold. "The time course of gaze bias in visual decision tasks". In: *Visual Cognition* 17.8 (Nov. 1, 2009). Publisher: Routledge _eprint: <https://doi.org/10.1080/13506280802362962>, pp. 1228–1243. ISSN: 1350-6285. DOI: 10.1080/13506280802362962. URL: <https://doi.org/10.1080/13506280802362962> (visited on 05/12/2023).

755 [17] Mackenzie G. Glaholt, Mei-Chun Wu, and Eyal M. Reingold. "Predicting preference from fixations". In: *PsychNology Journal* 7 (2009). Place: Italy Publisher: PsychNology Journal, pp. 141–158. ISSN: 1720-7525.

756 [18] Joshua I. Gold and Michael N. Shadlen. "The Neural Basis of Decision Making". In: *Annual Review of Neuroscience* 30.1 (2007). _eprint: <https://doi.org/10.1146/annurev.neuro.29.051605.113038>, pp. 535–574. DOI: 10.1146/annurev.neuro.29.051605.113038. URL: <https://doi.org/10.1146/annurev.neuro.29.051605.113038> (visited on 05/29/2023).

757 [19] Jacqueline Gottlieb. "Understanding active sampling strategies: Empirical approaches and implications for attention and decision research". In: *Cortex. The Unconscious Guidance of Attention* 102 (May 1, 2018), pp. 150–160. ISSN: 0010-9452. DOI: 10.1016/j.cortex.2017.08.019. URL: <https://www.sciencedirect.com/science/article/pii/S0010945217302769> (visited on 05/24/2023).

758 [20] Jacqueline Gottlieb et al. "Information seeking, curiosity and attention: computational and neural mechanisms". In: *Trends in cognitive sciences* 17.11 (Nov. 2013), pp. 585–593. ISSN: 1364-6613. DOI: 10.1016/j.tics.2013.09.001. URL: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193662/> (visited on 05/31/2023).

759 [21] Eric Hehman, Ryan M. Stolier, and Jonathan B. Freeman. "Advanced mouse-tracking analytic techniques for enhancing psychological science". In: *Group Processes & Intergroup Relations* 18.3 (May 2015), pp. 384–401. ISSN: 1368-4302, 1461-7188. DOI: 10.1177/1368430214538325. URL: <http://journals.sagepub.com/doi/10.1177/1368430214538325> (visited on 05/30/2023).

760 [22] Felix Henninger et al. "lab.js: A free, open, online study builder". In: *Behavior Research Methods* 54.2 (Apr. 1, 2022), pp. 556–573. ISSN: 1554-3528. DOI: 10.3758/s13428-019-01283-5. URL: <https://doi.org/10.3758/s13428-019-01283-5> (visited on 05/29/2023).

761 [23] Brian P. Johnson et al. "Crowdsourcing in Cognitive and Systems Neuroscience". In: *The Neuroscientist* (May 25, 2021). Publisher: SAGE Publications Inc STM, p. 10738584211017018. ISSN: 1073-8584. DOI: 10.1177/10738584211017018. URL: <https://doi.org/10.1177/10738584211017018> (visited on 07/20/2022).

797 [24] Mohamed Khamis, Florian Alt, and Andreas Bulling. “The past, present, and future of gaze-enabled
798 handheld mobile devices: survey and lessons learned”. In: *Proceedings of the 20th International Conference
799 on Human-Computer Interaction with Mobile Devices and Services*. MobileHCI ’18: 20th International
800 Conference on Human-Computer Interaction with Mobile Devices and Services. Barcelona
801 Spain: ACM, Sept. 3, 2018, pp. 1–17. ISBN: 978-1-4503-5898-9. DOI: 10.1145/3229434.3229452. URL:
802 <https://dl.acm.org/doi/10.1145/3229434.3229452> (visited on 05/31/2023).

803 [25] Alan Kingstone, Daniel Smilek, and John D. Eastwood. “Cognitive Ethology: A new approach for
804 studying human cognition”. In: *British Journal of Psychology* 99.3 (2008). eprint: <https://bpspsych.onlinelibrary.wiley.com/doi/10.1348/000712607X251243>. URL: <https://onlinelibrary.wiley.com/abs/10.1348/000712607X251243> (visited on 05/31/2023).

805 [26] Gregory J. Koop and Joseph G. Johnson. “The response dynamics of preferential choice”. In: *Cognitive
806 Psychology* 67.4 (Dec. 1, 2013), pp. 151–185. ISSN: 0010-0285. DOI: 10.1016/j.cogpsych.2013.09.001.
807 URL: <https://www.sciencedirect.com/science/article/pii/S0010028513000492> (visited on
808 05/30/2023).

809 [27] Ian Krajbich. “Accounting for attention in sequential sampling models of decision making”. In: *Current
810 Opinion in Psychology* 29 (Oct. 2019), pp. 6–11. ISSN: 2352250X. DOI: 10.1016/j.copsyc.2018.10.
811 008. URL: <https://linkinghub.elsevier.com/retrieve/pii/S2352250X18301866> (visited on
812 11/28/2022).

813 [28] Ian Krajbich, Carrie Armel, and Antonio Rangel. “Visual fixations and the computation and com-
814 parison of value in simple choice”. In: *Nature Neuroscience* 13.10 (Oct. 2010), pp. 1292–1298. ISSN:
815 1097-6256, 1546-1726. DOI: 10.1038/nn.2635. URL: <http://www.nature.com/articles/nn.2635>
816 (visited on 12/02/2022).

817 [29] Ian Krajbich and Antonio Rangel. “Multialternative drift-diffusion model predicts the relationship
818 between visual fixations and choice in value-based decisions”. In: *Proceedings of the National Academy
819 of Sciences of the United States of America* 108.33 (Aug. 16, 2011), pp. 13852–13857. ISSN: 0027-
820 8424. DOI: 10.1073/pnas.1101328108. URL: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158210/> (visited on 05/10/2023).

821 [30] Ian Krajbich et al. “The Attentional Drift-Diffusion Model Extends to Simple Purchasing Decisions”.
822 In: *Frontiers in Psychology* 3 (2012). ISSN: 1664-1078. URL: <https://www.frontiersin.org/articles/10.3389/fpsyg.2012.00193> (visited on 05/25/2023).

823 [31] PJ Lang, Margaret M. Bradley, and Bruce N. Cuthbert. “International affective picture system (IAPS):
824 affective ratings of pictures and instruction manual”. In: *Technical Report* (2008). Publisher: University
825 of Florida. URL: <https://cir.nii.ac.jp/crid/1573950399053852928> (visited on 05/31/2023).

826 [32] Joshua R. de Leeuw, Rebecca A. Gilbert, and Björn Luchterhandt. “jsPsych: Enabling an Open-
827 Source Collaborative Ecosystem of Behavioral Experiments”. In: *Journal of Open Source Software*
828 8.85 (May 11, 2023), p. 5351. ISSN: 2475-9066. DOI: 10.21105/joss.05351. URL: <https://joss.theoj.org/papers/10.21105/joss.05351> (visited on 05/29/2023).

829 [33] Jeff Moher and Joo-Hyun Song. “Perceptual decision processes flexibly adapt to avoid change-of-mind
830 motor costs”. In: *Journal of Vision* 14.8 (July 1, 2014), p. 1. ISSN: 1534-7362. DOI: 10.1167/14.8.1.
831 URL: <https://doi.org/10.1167/14.8.1> (visited on 05/30/2023).

832 [34] Omar Namnakani et al. “Comparing Dwell time, Pursuits and Gaze Gestures for Gaze Interaction
833 on Handheld Mobile Devices”. In: *Proceedings of the 2023 CHI Conference on Human Factors in
834 Computing Systems*. CHI ’23: CHI Conference on Human Factors in Computing Systems. Hamburg
835 Germany: ACM, Apr. 19, 2023, pp. 1–17. ISBN: 978-1-4503-9421-5. DOI: 10.1145/3544548.3580871.
836 URL: <https://dl.acm.org/doi/10.1145/3544548.3580871> (visited on 05/18/2023).

837 [35] John Palmer, Alexander C. Huk, and Michael N. Shadlen. “The effect of stimulus strength on the speed
838 and accuracy of a perceptual decision”. In: *Journal of Vision* 5.5 (May 2, 2005), p. 1. ISSN: 1534-7362.
839 DOI: 10.1167/5.5.1. URL: <https://doi.org/10.1167/5.5.1> (visited on 05/29/2023).

840 [36] Jonathan Peirce et al. “PsychoPy2: Experiments in behavior made easy”. In: *Behavior Research Methods*
841 51.1 (Feb. 1, 2019), pp. 195–203. ISSN: 1554-3528. DOI: 10.3758/s13428-018-01193-y. URL:
842 <https://doi.org/10.3758/s13428-018-01193-y> (visited on 05/29/2023).

848 [37] Roger Ratcliff and Jeffrey N. Rouder. "Modeling response times for two-choice decisions". In: *Psychological Science* 9 (1998). Place: United Kingdom Publisher: Blackwell Publishing, pp. 347–356. ISSN: 1467-9280. DOI: 10.1111/1467-9280.00067.

849

850

851 [38] J. F. Schouten and J. A. M. Bekker. "Reaction time and accuracy". In: *Acta Psychologica* 27 (Jan. 1, 1967), pp. 143–153. ISSN: 0001-6918. DOI: 10.1016/0001-6918(67)90054-6. URL: <https://www.sciencedirect.com/science/article/pii/0001691867900546> (visited on 05/29/2023).

852

853

854 [39] Immo Schuetz et al. "An Explanation of Fitts' Law-like Performance in Gaze-Based Selection Tasks Using a Psychophysics Approach". In: *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*. CHI '19: CHI Conference on Human Factors in Computing Systems. Glasgow Scotland Uk: ACM, May 2, 2019, pp. 1–13. ISBN: 978-1-4503-5970-2. DOI: 10.1145/3290605.3300765. URL: <https://dl.acm.org/doi/10.1145/3290605.3300765> (visited on 08/23/2022).

855

856

857

858

859 [40] Kilian Semmelmann and Sarah Weigelt. "Online webcam-based eye tracking in cognitive science: A first look". In: *Behavior Research Methods* 50.2 (Apr. 2018), pp. 451–465. ISSN: 1554-3528. DOI: 10.3758/s13428-017-0913-7. URL: <http://link.springer.com/10.3758/s13428-017-0913-7> (visited on 08/24/2022).

860

861

862

863 [41] Simone G. Shamay-Tsoory and Avi Mendelsohn. "Real-Life Neuroscience: An Ecological Approach to Brain and Behavior Research". In: *Perspectives on Psychological Science* 14.5 (Sept. 1, 2019). Publisher: SAGE Publications Inc, pp. 841–859. ISSN: 1745-6916. DOI: 10.1177/1745691619856350. URL: <https://doi.org/10.1177/1745691619856350> (visited on 05/31/2023).

864

865

866

867 [42] Shinsuke Shimojo et al. "Gaze bias both reflects and influences preference". In: *Nature Neuroscience* 6.12 (Dec. 2003), pp. 1317–1322. ISSN: 1097-6256, 1546-1726. DOI: 10.1038/nn1150. URL: <https://www.nature.com/articles/nn1150> (visited on 05/24/2023).

868

869

870 [43] Philip L Smith and Douglas Vickers. "The accumulator model of two-choice discrimination". In: *Journal of Mathematical Psychology* 32.2 (June 1, 1988), pp. 135–168. ISSN: 0022-2496. DOI: 10.1016/0022-2496(88)90043-0. URL: <https://www.sciencedirect.com/science/article/pii/0022249688900430> (visited on 05/29/2023).

871

872

873

874 [44] Stephanie M. Smith and Ian Krajbich. "Attention and choice across domains." In: *Journal of Experimental Psychology: General* 147.12 (Dec. 2018), pp. 1810–1826. ISSN: 1939-2222, 0096-3445. DOI: 10.1037/xge0000482. URL: <http://doi.apa.org/getdoi.cfm?doi=10.1037/xge0000482> (visited on 05/25/2023).

875

876

877

878 [45] Emma E. M. Stewart, Matteo Valsecchi, and Alexander C. Schütz. "A review of interactions between peripheral and foveal vision". In: *Journal of Vision* 20.12 (Nov. 3, 2020), p. 2. ISSN: 1534-7362. DOI: 10.1167/jov.20.12.2. URL: <https://doi.org/10.1167/jov.20.12.2> (visited on 05/31/2023).

879

880

881 [46] Paul E. Stillman, Xi Shen, and Melissa J. Ferguson. "How Mouse-tracking Can Advance Social Cognitive Theory". In: *Trends in Cognitive Sciences* 22.6 (June 1, 2018), pp. 531–543. ISSN: 1364-6613. DOI: 10.1016/j.tics.2018.03.012. URL: <https://www.sciencedirect.com/science/article/pii/S1364661318300731> (visited on 05/30/2023).

882

883

884

885 [47] Scott A. Stone and Craig S. Chapman. "Unconscious Frustration: Dynamically Assessing User Experience using Eye and Mouse Tracking". In: *Proceedings of the ACM on Human-Computer Interaction* 7 (ETRA May 18, 2023), 168:1–168:17. DOI: 10.1145/3591137. URL: <https://dl.acm.org/doi/10.1145/3591137> (visited on 05/29/2023).

886

887

888

889 [48] Nathan J. Wispinski, Jason P. Gallivan, and Craig S. Chapman. "Models, movements, and minds: bridging the gap between decision making and action". In: *Annals of the New York Academy of Sciences* 1464.1 (Mar. 2020), pp. 30–51. ISSN: 0077-8923, 1749-6632. DOI: 10.1111/nyas.13973. URL: <https://onlinelibrary.wiley.com/doi/10.1111/nyas.13973> (visited on 05/30/2023).

890

891

892

893 [49] Xiaozhi Yang and Ian Krajbich. "Webcam-based online eye-tracking for behavioral research". In: *Judgment and Decision Making* 16.6 (2021), pp. 1485–1505. URL: <https://journal.sjdm.org/21/210525/jdm210525.html> (visited on 08/24/2022).

894

895